Soft Gamma Repeater Burst Activity from Anomalous X-ray Pulsars

Peter Woods (USRA/NSSTC)

Victoria Kaspi (McGill Univ)
Fotis Gavriil (McGill Univ)
Joseph Jensen (Gemini)
Mallory Roberts (McGill Univ)
Deepto Chakrabarty (MIT)

AXP Properties

- $L_x = 10^{35-36} \text{ ergs s}^{-1}$
- Two-component energy spectrum
 BB kT ~ 0.4-0.5 keV
 PL Γ ~ 2.5-4.0
- Spin periods ~ 6-11 s
- Spindown rates ~
 10⁻¹³ -10⁻¹¹ s s⁻¹

1E 1048.1-5937

1E 2259+586

- 2/5 SNR assoc
- 3/5 IR counterparts
- Low Galactic scale height

Nature of the AXPs

- Rotation powered neutron star insufficient energetics
- Rotation powered white dwarf SNR associations, age problem
- LMXB inconsistent X-ray spectrum, no orbital Doppler shifts, age problem
- Fossil Disk accretion inconsistent X-ray spectrum, IR counterparts too bright, high amplitude optical pulsations
- Quark star still in its infancy, inconclusive
- Magnetar consistent with most properties, still behind some of the observations

Magnetar Model

- Strongly magnetized neutron stars (B_{dip} ~ 10¹⁴⁻¹⁵ G)
- Strong field consistent with rapid spindown
- Decay of the magnetic field powers the bright X-ray emission
- Model originally developed to explain super-Eddington bursts from SGRs

SGR Bursts and Flares

- Duration ~ 0.1 s
- Energy spectrum above 15 keV dN/dE ∞E⁻¹ e^{-E/kT} kT ~ 20–30 keV
- $L \le 10^{41} \text{ ergs s}^{-1}$

- $L \sim 10^{45} \text{ ergs s}^{-1}$
- Durations ~minutes
- Clear pulsations in tail

Mazets et al. 1979

AXP = SGR

AXP/SGR similarities as of mid-1990s:

- Similar persistent X-ray luminosities
- SNR associations?
- Periodicity in March 5th flare fit within AXP spin period range

Thompson & Duncan 1996 predictions:

- SGR X-ray counterparts may show coherent pulsations
- AXPs may one day burst

SGR Pulsations

- Discovery of 7.5 s pulsations
- Rapid spindown
- Inferred field strength B_{dip} ~ 10¹⁵ G
- Concluded SGRs were magnetars and SGRs were similar to AXPs

Kouveliotou et al. 1998

Further Similarities

- Discovery of 5.2 s pulsations and rapid spindown in SGR 1900+14 Hurley et al. 1999; Kouveliotou et al. 1999
- Two-component energy spectrum in SGR 1900+14 Woods et al. 1999
- Continuum of spectral hardness

Marsden & White 2001

AXP Burst Search

- Nothing detected from AXPs in 20 years of observations with all-sky gammaray instruments
- Utilize 2.5 order of magnitude increase in detector sensitivity of the RXTE PCA to search for bursts from AXPs

Gogus et al. 1999

Bursts from 1E 1048.1-5937

Gavriil, Kaspi & Woods 2002

Pulsed Flux Increase?

1E 1048.1-5937 Burst 1

- Marginal increase in pulsed flux following burst 1
- Marginal increase in pulsed flux during epoch surrounding bursts relative to long-term behavior
- Not conclusive

Gavriil, Kaspi & Woods 2002

Spectral Line

- Broad line or ridge near 14 keV
- Less significant features at 7 and 30 keV

Gavriil, Kaspi & Woods 2002

1E 1048.1-5937 Burst 1

Burst Origin?

- Type I bursts? wrong spectrum, fast rise times, no known bursters in fov, spectral line
- Type II bursts? short rise times, rarity of such sources (2 known in Galaxy), spectral line
- GRBs? low probability of two GRBs in small fov (9 x 10⁻⁵)

Likeness to SGR Bursts

Similar Properties

- Rise times
- Duration, time history, and spectrum of burst 2
- Clustering in time

Consistent Properties

- Long tail of burst 1
- Spectral feature

SGR 1900+14

Strohmayer & Ibrahim 1999

Bursts from 1E 2259+586

- More than 80 bursts detected within 11 ksec
- Correlated change in pulsed flux

Kaspi et al. 2002

Pulse Profile Change

1E 2259+586

- Change in pulse profile coincident with burst activity
- No doubt that the AXP was the source of the bursts

1E 2259+586 Burst Properties

 Most bursts are very "SGR-like" in their temporal and spectral properties

A small fraction of events (≤10%) have extended tails, similar to the tail seen following burst 1 from 1E 1048.1-5937

Gavriil et al. 2003

1E 2259+586 Spectral Change

- Pulse fraction decreased
- No single component model fits the tail spectrum
- Spectrum
 hardened
 initially, then
 rapidly moved
 back toward
 quiescent values

A Glitch in 1E 2259+586

- Time of glitch consistent with burst epoch
- $\Delta v/v = 4.1 \times 10^{-6}$
- $\Delta \dot{v}/\dot{v} \sim 2.5$
- Torque returns rapidly toward the pre-outburst level in the weeks following

1E 2259+586 IR Flux Change

- IR flux (K_s band) increased by a factor 3.4
- IR flux excess decayed within 40 days following burst activity
 Israel et al. 2003

SGR 1900+14 Flux History

- Clear correlation with burst rate
- Two brightest flares stand out in persistent emission

Woods et al. 2001

SGR 1900+14 Pulse Profile

- Profile change seen in X-rays and γ-rays following giant flare of August 27, 1998
- Profile change is effectively permanent

Sep 96 May 97 Apr 98 Jun 98 T_a+40s to T_a+100s Ta+280s to Ta+330s Sep 98 Jan 99 Mar 00 Jun 00

Woods et al. 2001

August 29 Tail Spectrum

 Cooling blackbody emission during tail

Ibrahim et al. 2001 Lenters et al. 2002

Summary and Conclusions

- AXPs and SGRs are of the same nature
- Both AXPs and SGRs are most likely magnetars
- Any AXP can emit bursts, not just "intermediates"
- AXP/SGR outbursts are not uniform
- The major outbursts in these sources likely involve some sort of magnetic field reconfiguration

SGR Burst Activity

